Тепловой расчет системы отопления: формулы, справочные данные и конкретный пример

Если необходим расчет в гигакалориях

В случае отсутствия счетчика тепловой энергии на открытом отопительном контуре расчет тепловой нагрузки на отопление здания рассчитывают по формуле Q = V * (Т1 — Т2) / 1000, где:

  • V – количество воды, потребляемой системой отопления, исчисляется тоннами или м3,
  • Т1 – число, показывающее температуру горячей воды, измеряется в оС и для вычислений берется температура, соответствующая определенному давлению в системе. Показатель этот имеет свое название – энтальпия. Если практическим путем снять температурные показатели нет возможности, прибегают к усредненному показателю. Он находится в пределах 60-65оС.
  • Т2 – температура холодной воды. Ее измерить в системе довольно трудно, поэтому разработаны постоянные показатели, зависящие от температурного режима на улице. К примеру, в одном из регионов, в холодное время года этот показатель принимается равным 5, летом – 15.
  • 1 000 – коэффициент для получения результата сразу в гигакалориях.

В случае закрытого контура тепловая нагрузка (гкал/час) рассчитывается иным образом:

Qот = α * qо * V * (tв — tн.р) * (1 + Kн.р) * 0,000001, где

  • α – коэффициент, призванный корректировать климатические условия. Берется в расчет, если уличная температура отличается от -30оС;
  • V – объем строения по наружным замерам;
  • qо – удельный отопительный показатель строения при заданной tн.р = -30оС, измеряется в ккал/м3*С;
  • tв – расчетная внутренняя температура в здании;
  • tн.р – расчетная уличная температура для составления проекта системы отопления;
  • Kн.р – коэффициент инфильтрации. Обусловлен соотношением тепловых потерь расчетного здания с инфильтрацией и теплопередачей через внешние конструктивные элементы при уличной температуре, которая задана в рамках составляемого проекта.

Расчет тепловой нагрузки получается несколько укрупненным, но именно эта формула дается в технической литературе.

Цели и задачи гидравлического расчёта

С инженерной точки зрения жидкостная система отопления представляется достаточно сложным комплексом, включающим устройства генерации тепла, его транспортировки и выделения в обогреваемых помещениях. Идеальным режимом работы гидравлической системы отопления считается такой, при котором теплоноситель поглощает максимум тепла от источника и передаёт его комнатной атмосфере без потерь в процессе перемещения. Конечно, такая задача видится совершенно недостижимой, однако более вдумчивый подход позволяет предсказать поведение системы в различных условиях и максимально приблизиться к эталонным показателям. Это и есть главная цель проектирования систем отопления, важнейшей частью которого по праву считается гидравлический расчёт.

Практические цели гидравлического расчёта таковы:

  1. Понять, с какой скоростью и в каком объёме осуществляется перемещение теплоносителя в каждом узле системы.
  2. Определить, какое влияние оказывает изменение режима работы каждого из устройств на весь комплекс в целом.
  3. Установить, какая производительность и рабочие характеристики отдельных узлов и устройств будут достаточными для выполнения отопительной системой своих функций без значительного удорожания и обеспечения необоснованно высокого запаса надёжности.
  4. В конечном итоге — обеспечить строго дозированное распределение тепловой энергии по различным зонам отопления и гарантировать, что это распределение будет сохраняться с высоким постоянством.

Можно сказать больше: без хотя бы базовых расчётов невозможно добиться приемлемой стабильности работы и долговечного использования оборудования. Моделирование действия гидравлической системы, по сути, является базисом, на котором строится вся дальнейшая проектная разработка.

Как воспользоваться результатами вычислений

Зная потребность здания в тепловой энергии, домовладелец может:

  • четко подобрать мощность теплосилового оборудования для обогрева коттеджа;
  • набрать нужное количество секций радиаторов;
  • определить необходимую толщину утеплителя и выполнить теплоизоляцию здания;
  • выяснить расход теплоносителя на любом участке системы и при необходимости выполнить гидравлический расчет трубопроводов;
  • узнать среднесуточное и месячное потребление тепла.

Последний пункт представляет особый интерес. Мы нашли величину тепловой нагрузки за 1 час, но ее можно пересчитать на более продолжительный период и вычислить предполагаемый расход топлива — газа, дров или пеллет.

Для примера – проект одноэтажного дома 100 м²

Чтобы доходчиво пояснить все способы определения количества тепловой энергии, предлагаем взять в качестве примера одноэтажный дом общей площадью 100 квадратов (по наружному обмеру), показанный на чертеже. Перечислим технические характеристики здания:

  • регион постройки – полоса умеренного климата (Минск, Москва);
  • толщина внешних ограждений – 38 см, материал – силикатный кирпич;
  • наружное утепление стен – пенопласт толщиной 100 мм, плотность – 25 кг/м³;
  • полы – бетонные на грунте, подвал отсутствует;
  • перекрытие – ж/б плиты, утепленные со стороны холодного чердака пенопластом 10 см;
  • окна – стандартные металлопластиковые на 2 стекла, размер – 1500 х 1570 мм (h);
  • входная дверь – металлическая 100 х 200 см, изнутри утеплена экструдированным пенополистиролом 20 мм.

В коттедже устроены межкомнатные перегородки в полкирпича (12 см), котельная располагается в отдельно стоящей постройке. Площади комнат обозначены на чертеже, высоту потолков будем принимать в зависимости от поясняемой расчетной методики – 2.8 либо 3 м.

Современные отопительные элементы

Крайне редко можно сегодня увидеть дом, в котором отопление выполняется исключительно воздушными источниками. К ним можно отнести электрические отопительные приборы: тепловентиляторы, радиаторы, УФО, тепловые пушки, электрические камины, печи. Рациональнее всего использовать их в качестве вспомогательных элементов при стабильно работающей основной отопительной системе. Причина их «второстепенности» — достаточно высокая себестоимость электроэнергии.

Основные элементы системы отопления

При планировании отопительной системы любого типа важно знать, что есть общепринятые рекомендации, касающиеся удельной мощности используемого нагревательного котла. В частности, для северных регионов страны она составляет примерно 1,5 – 2,0 кВт, в центральных — 1,2 – 1,5 кВт, в южных — 0,7 – 0,9 кВт

При этом перед тем, как рассчитать систему отопления, для вычисления оптимальной мощности котла следует воспользоваться формулой:

W кот. = S*W / 10.

Расчет системы отопления зданий, а именно – мощности котла – важный этап при планировании создания отопительной системы

При этом важно обратить особенное внимание на следующие параметры:

  • суммарная площадь всех помещений, которые будут подключены к отопительной системе – S;
  • рекомендованная удельная мощность котла (параметр, зависящий от региона).

Допустим, что необходимо рассчитать емкость системы отопления  и мощность котла для дома, в котором суммарная площадь помещений, которые необходимо отапливать S = 100 м2. При этом возьмем рекомендованную удельную мощность для центральных регионов страны и подставим данные в формулу. Получим:

W кот. = 100*1,2/10=12 кВт.

Точные расчеты тепловой нагрузки

Значение теплопроводности и сопротивление теплопередачи для строительных материалов

Но все же этот расчет оптимальной тепловой нагрузки на отопление не дает требуемую точность вычисления. Он не учитывает важнейший параметр – характеристики здания. Главной из них является сопротивление теплопередачи материал изготовления отдельных элементов дома – стен, окон, потолка и пола. Именно они определяют степень сохранения тепловой энергии, полученной от теплоносителя системы отопления.

Что же такое сопротивление теплопередачи (R )? Это величина, обратная теплопроводности (λ ) – возможности структуры материала передавать тепловую энергию. Т.е. чем больше значение теплопроводности – тем выше тепловые потери. Для расчета годовой нагрузки на отопление воспользоваться этой величиной нельзя, так как она не учитывает толщину материала (d ). Поэтому специалисты используют параметр сопротивление теплопередачи, который вычисляется по следующей формуле:

Расчет по стенам и окнам

Сопротивление теплопередачи стен жилых зданий

Существуют нормированные значения сопротивления теплопередачи стен, которые напрямую зависят от региона, где расположен дом.

В отличие от укрупненного расчета нагрузки на отопление сначала нужно вычислить сопротивление теплопередачи для наружных стен, окон, пола первого этажа и чердака. Возьмем за основу следующие характеристики дома:

  • Площадь стен – 280 м². В нее включены окна – 40 м² ;
  • Материал изготовления стен – полнотелый кирпич (λ=0.56 ). Толщина наружных стен – 0,36 м. Исходя из этого рассчитываем сопротивление телепередачи — R=0.36/0.56= 0,64 м²*С/Вт ;
  • Для улучшения теплоизоляционных свойств был установлен наружный утеплитель – пенополистирол толщиной 100 мм. Для него λ=0,036. Соответственно R=0,1/0,036= 2,72 м²*С/Вт ;
  • Общее значение R для наружных стен равно 0,64+2,72= 3,36 что является очень хорошим показателем теплоизоляции дома;
  • Сопротивление теплопередачи окон — 0,75 м²*С/Вт (двойной стеклопакет с заполнением аргоном).

Фактически тепловые потери через стены составят:

(1/3,36)*240+(1/0.75)*40= 124 Вт при разнице температуры в 1°С

Температурные показатели возьмем такие же, как и для укрупненного вычисления нагрузки на отопление +22°С в помещении и -15°С на улице. Дальнейший расчет необходимо делать по следующей формуле:

Расчет по вентиляции

Затем необходимо вычислить потери через вентиляцию. Общий объем воздуха в здании составляет 480 м³. При этом его плотность примерно равна 1,24 кг/м³. Т.е. его масса равна 595 кг. В среднем за сутки (24 часа) происходит пятикратное обновление воздуха. В таком случае для вычисления максимальной часовой нагрузки для отопления нужно рассчитать тепловые потери на вентиляцию:

(480*40*5)/24= 4000 кДж или 1,11 кВт/час

Суммируя все полученные показатели можно найти общие тепловые потери дом:

Таким образом определяется точная максимальная тепловая нагрузка на отопление. Полученная величина напрямую зависит от температуры на улице. Поэтому для расчета годовой нагрузки на отопительную систему нужно учитывать изменение погодных условий. Если средняя температура в течение отопительного сезона составляет -7°С, то итоговая нагрузка на отопление будет равна:

(124*(22+7)+((480*(22+7)*5)/24))/3600)*24*150(дней отопительного сезона)=15843 кВт

Меняя температурные значения можно сделать точный расчет тепловой нагрузки для любой системы отопления.

К полученным результатам нужно прибавить значение тепловых потерь через крышу и пол. Это можно сделать поправочным коэффициентом 1,2 – 6,07*1,2=7,3 кВт/ч.

Полученная величина указывает на фактические затраты энергоносителя при работе системы. Существует несколько способов регулирования тепловой нагрузки отопления. Наиболее действенный из них – уменьшение температуры в комнатах, где нет постоянного присутствия жильцов. Это можно осуществить с помощью терморегуляторов и установленных датчиков температуры. Но при этом в здании должна быть установлена двухтрубная система отопления.

Для вычисления точного значения тепловых потерь можно воспользоваться специализированной программой Valtec. В видеоматериале показа пример работы с ней.

Анатолий Коневецкий, Крым, Ялта

Анатолий Коневецкий, Крым, Ялта

Уважаемая Ольга! Извините,что обращаюсь к Вам еще раз. Что-то у меня по Вашим формулам получается немыслимая тепловая нагрузка: Кир=0,01*(2*9,8*21,6*(1-0,83)+12,25)=0,84 Qот=1,626*25600*0,37*((22-(-6))*1,84*0,000001=0,793 Гкал/час По укрупненной формуле, приведенной выше, получается всего 0,149 Гкал/час. Не могу понять, в чем дело? Разъясните пожалуйста! Извините за беспокойство. Анатолий.

Анатолий Коневецкий, Крым, Ялта

Формулы для расчётов и справочные данные

Расчет тепловой нагрузки на отопление предполагает определение тепловых потерь(Тп) и мощности котла (Мк). Последняя рассчитывается по формуле:

Мк=1,2* Тп, где:

  • Мк – тепловая производительность системы отопления, кВт;
  • Тп – тепловые потери дома;
  • 1,2 – коэффициент запаса (составляет 20%).

Двадцатипроцентный коэффициент запаса позволяет учесть возможное падение давления в газопроводе в холодное время года и непредвиденные потери тепла (например, разбитое окно, некачественная теплоизоляция входных дверей или небывалые морозы). Он позволяет застраховаться от ряда неприятностей, а также даёт возможность широкого регулирования режима температур.

Как видно из этой формулы мощность котла напрямую зависит от теплопотерь. Они распределяются по дому не равномерно: на наружные стены приходится порядка 40% от общей величины, на окна – 20%, пол отдаёт 10%, крыша 10%. Оставшиеся 20% улетучиваются через двери, вентиляцию.

Плохо утеплённые стены и пол, холодные чердак, обычное остекление на окнах — всё это приводит к большим потерям тепла, а, следовательно, к увеличению нагрузки на систему отопления

При строительстве дома важно уделить внимание всем элементам, ведь даже непродуманная вентиляция в доме будет выпускать тепло на улицу. Материалы, из которых построен дом, оказывают самое непосредственное влияние на количество потерянного тепла. Поэтому при расчётах нужно проанализировать, из чего состоят и стены, и пол, и всё остальное

Поэтому при расчётах нужно проанализировать, из чего состоят и стены, и пол, и всё остальное

Поэтому при расчётах нужно проанализировать, из чего состоят и стены, и пол, и всё остальное

Материалы, из которых построен дом, оказывают самое непосредственное влияние на количество потерянного тепла. Поэтому при расчётах нужно проанализировать, из чего состоят и стены, и пол, и всё остальное.

В расчётах, чтобы учесть влияние каждого из этих факторов, используются соответствующие коэффициенты:

  • К1 – тип окон;
  • К2 – изоляция стен;
  • К3 – соотношение площади пола и окон;
  • К4 – минимальная температура на улице;
  • К5 – количество наружных стен дома;
  • К6 – этажность;
  • К7 – высота помещения.

Для окон коэффициент потерь тепла составляет:

  • обычное остекление – 1,27;
  • двухкамерный стеклопакет – 1;
  • трёхкамерный стеклопакет – 0,85.

Естественно, последний вариант сохранит тепло в доме намного лучше, чем два предыдущие.

Правильно выполненная изоляция стен является залогом не только долгой жизни дома, но и комфортной температуры в комнатах. В зависимости от материала меняется и величина коэффициента:

  • бетонные панели, блоки – 1,25-1,5;
  • брёвна, брус – 1,25;
  • кирпич (1,5 кирпича) – 1,5;
  • кирпич (2,5 кирпича) – 1,1;
  • пенобетон с повышенной теплоизоляцией – 1.

Чем больше площадь окон относительно пола, тем больше тепла теряет дом:

2 Сезонные особенности отопления

Температура теплоносителя, нормы которой зависят от массы факторов, в точках разбора должна лежать в диапазоне 60−75 градусов Цельсия. Определенные изменения могут присутствовать в зависимости от текущего сезона. В сеть горячего водоснабжения носитель тепла подается с трубы:

  1. 1. В зимний период — с трубы «обратки», что требуется для защиты пользователей от обжигания кипятком.
  2. 2. В летний период — с прямой трубы, так как летом источник тепла прогревается не выше 75 градусов Цельсия.

В период отопления появляется необходимость составлять температурный график, согласно которому средняя суточная температура воды из «обратки» не должна превышать его на 5% ночью и на 3% днем.

Не секрет, что одной из ключевых составляющих каждой системы отопления является стояк, который позволяет теплоносителю нормально проходить в батарею или радиатор из теплового узла. Актуальные нормы требуют поддержания нагрева в стояке в диапазоне 70−90 градусов Цельсия. Что касается фактических градусов, то они определяются выходными параметрами ТЭЦ или котельной установки. С приходом летнего потепления, когда горячее водоснабжение требуется только для стирки и принятия душа, этот диапазон опускается до показателей 40−60 градусов.

Если провести простые наблюдения, можно заметить, что в соседней квартире обогревательные элементы более горячие или холодные, чем в собственной. Подобная разница между температурными показателями объясняется применяемым способом раздачи ГВС. В однотрубных установках жидкость раздается:

  1. 1. Сверху. В таком случае обогревательные радиаторы на верхних этажах прогреваются быстрее и сильнее, чем на нижних.
  2. 2. Снизу. Здесь ситуация выглядит противоположным образом.

Цели и задачи гидравлического расчёта

С инженерной точки зрения жидкостная система отопления представляется достаточно сложным комплексом, включающим устройства генерации тепла, его транспортировки и выделения в обогреваемых помещениях. Идеальным режимом работы гидравлической системы отопления считается такой, при котором теплоноситель поглощает максимум тепла от источника и передаёт его комнатной атмосфере без потерь в процессе перемещения. Конечно, такая задача видится совершенно недостижимой, однако более вдумчивый подход позволяет предсказать поведение системы в различных условиях и максимально приблизиться к эталонным показателям. Это и есть главная цель проектирования систем отопления, важнейшей частью которого по праву считается гидравлический расчёт.

Практические цели гидравлического расчёта таковы:

  1. Понять, с какой скоростью и в каком объёме осуществляется перемещение теплоносителя в каждом узле системы.
  2. Определить, какое влияние оказывает изменение режима работы каждого из устройств на весь комплекс в целом.
  3. Установить, какая производительность и рабочие характеристики отдельных узлов и устройств будут достаточными для выполнения отопительной системой своих функций без значительного удорожания и обеспечения необоснованно высокого запаса надёжности.
  4. В конечном итоге — обеспечить строго дозированное распределение тепловой энергии по различным зонам отопления и гарантировать, что это распределение будет сохраняться с высоким постоянством.

Можно сказать больше: без хотя бы базовых расчётов невозможно добиться приемлемой стабильности работы и долговечного использования оборудования. Моделирование действия гидравлической системы, по сути, является базисом, на котором строится вся дальнейшая проектная разработка.

Для примера – проект одноэтажного дома 100 м²

Чтобы доходчиво пояснить все способы определения количества тепловой энергии, предлагаем взять в качестве примера одноэтажный дом общей площадью 100 квадратов (по наружному обмеру), показанный на чертеже. Перечислим технические характеристики здания:

  • регион постройки – полоса умеренного климата (Минск, Москва);
  • толщина внешних ограждений – 38 см, материал – силикатный кирпич;
  • наружное утепление стен – пенопласт толщиной 100 мм, плотность – 25 кг/м³;
  • полы – бетонные на грунте, подвал отсутствует;
  • перекрытие – ж/б плиты, утепленные со стороны холодного чердака пенопластом 10 см;
  • окна – стандартные металлопластиковые на 2 стекла, размер – 1500 х 1570 мм (h);
  • входная дверь – металлическая 100 х 200 см, изнутри утеплена экструдированным пенополистиролом 20 мм.

В коттедже устроены межкомнатные перегородки в полкирпича (12 см), котельная располагается в отдельно стоящей постройке. Площади комнат обозначены на чертеже, высоту потолков будем принимать в зависимости от поясняемой расчетной методики – 2.8 либо 3 м.

Расчёт теплопотерь в доме

Согласно второму началу термодинамики (школьная физика) не существует самопроизвольной передачи энергии от менее нагретых к более нагретым мини- или макрообъектам. Частным случаем этого закона является «стремление» создания температурного равновесия между двумя термодинамическими системами.

Например, первая система — окружающая среда с температурой -20°С, вторая система — здание с внутренней температурой +20°С. Согласно приведённого закона эти две системы будут стремиться уравновеситься посредством обмена энергии. Это будет происходить с помощью тепловых потерь от второй системы и охлаждения в первой.

Однозначно можно сказать, что температура окружающей среды зависит от широты на которой расположен частный дом. А разница температур влияет на количество утечек тепла от здания

Под теплопотерями подразумевают непроизвольный выход тепла (энергии) от некоторого объекта (дома, квартиры). Для обычной квартиры этот процесс не так «заметен» в сравнении с частным домом, поскольку квартира находиться внутри здания и «соседствует» с другими квартирами. В частном доме через внешние стены, пол, крышу, окна и двери в той или иной степени «уходит» тепло.

Зная величину теплопотерь для самых неблагоприятных погодных условий и характеристику этих условий, можно с высокой точностью вычислить мощность системы отопления.

Итак, объём утечек тепла от здания вычисляется по следующей формуле:

Q=Qпол+Qстена+Qокно+Qкрыша+Qдверь+…+Qi

где Qi — объём теплопотерь от однородного вида оболочки здания. Каждая составляющая формулы рассчитывается по формуле:

Q=S*∆T/R

где Q – тепловые утечки (Ватты), S – площадь конкретного типа конструкции (м2), ∆T – разница температур воздуха окружающей среды и внутри помещения (°C), R – тепловое сопротивление определённого типа конструкции (м2*°C/Вт).

Саму величину теплового сопротивления для реально существующих материалов рекомендуется брать из вспомогательных таблиц. Кроме того, тепловое сопротивление можно получить с помощью следующего соотношения:

R=d/k

где R – тепловое сопротивление ((м2*К)/Вт), k – коэффициент теплопроводности материала (Вт/(м2*К)), d – толщина этого материала (м).

В старых домах с отсыревшей кровельной конструкцией утечки тепла происходят через верхнюю часть постройки, а именно через крышу и чердак. Если утеплить чердачное пространство и крышу, то общие потери тепла от дома можно значительно уменьшить

В доме существуют ещё несколько видов тепловых потерь через щели в конструкциях, систему вентиляции, кухонную вытяжку, открывания окон и дверей. Но учитывать их объём не имеет смысла, поскольку они составляют не более 5% от общего числа основных утечек тепла.

Основные факторы

Идеально рассчитанная и сконструированная система отопления должна поддерживать заданную температуру в помещении и компенсировать возникающие потери тепла. Рассчитывая показатель тепловой нагрузки на систему отопления в здании нужно принимать к сведению:

— Назначение здания: жилое или промышленное.

— Характеристику конструктивных элементов строения. Это окна, стены, двери, крыша и вентиляционная система.

— Размеры жилища. Чем оно больше, тем мощнее должна быть система отопления. Обязательно нужно учитывать площадь оконных проемов, дверей, наружных стен и объем каждого внутреннего помещения.

— Наличие комнат специального назначения (баня, сауна и пр.).

— Степень оснащения техническими приборами. То есть, наличие горячего водоснабжения, системы вентиляции, кондиционирование и тип отопительной системы.

— Температурный режим для отдельно взятого помещения. Например, в комнатах, предназначенных для хранения, не нужно поддерживать комфортную для человека температуру.

— Количество точек с подачей горячей воды. Чем их больше, тем сильнее нагружается система.

— Площадь остекленных поверхностей. Комнаты с французскими окнами теряют значительное количество тепла.

— Дополнительные условия. В жилых зданиях это может быть количество комнат, балконов и лоджий и санузлов. В промышленных – количество рабочих дней в календарном году, смен, технологическая цепочка производственного процесса и пр.

— Климатические условия региона. При расчёте теплопотерь учитываются уличные температуры. Если перепады незначительны, то и на компенсацию будет уходить малое количество энергии. В то время как при -40 о С за окном потребует значительных ее расходов.

Поделитесь в социальных сетях:FacebookX
Напишите комментарий